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ABSTRACT

Current state of the art models for performing clinical text analysis do not yet represent tech-

nologies that can be incorporated into tools for live use by medical professionals and practitioners

in hospitals due to the discrepancy between the data used in research and the data created in and

used by hospitals. Public datasets utilized by natural language processing (NLP) research groups

are heavily processed before use in research both by necessity (removal of sensitive personal in-

formation) and to improve the ability of language-processing models to extract information.

This thesis explores the aspects of unprocessed hospital text that add unwanted noise, and

using the knowledge gained of the syntax and semantics of these documents, proposes a novel

model architecture that incorporates measures for addressing undesirable anti-patterns that are

common in hospital patient notes with the final goal of creating a model that can be used directly

on hospital medical data without any intermediate human processing.

Traditional machine learning models exhibit little capacity to cope with the intricacies of

natural language processing. The introduction of deep learning architectures like recurrent neu-

ral networks (RNNs) and transformers have made NLP possible by allowing models to capture

both local and global entities in text. Transformers in particular address key challenges through

mechanisms like self-attention, enabling models to weigh the importance of different tokens in a

sequence without requiring an explicitly ordered dependency. However, the flexibility that allows

transformers to handle the complexities of human language also makes the highly sensitive to noise

and unwanted patterns in the data they are trained on. We combat this by leveraging the semantic

knowledge that we have gained to create software that reduces the intensive manual data curation

that would normally be necessary into model hyperparameters that can be tuned to account for the

anti-patterns of similar patient document datasets.
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PUBLIC ABSTRACT

The models that are currently the best for analyzing medical text can’t yet be used in actual

hospitals because of the difference between the data used in research and the data created and

used by hospitals. Most medical text datasets used by researchers are heavily processed before use

for many reasons, and a model would have to work even without said processing in order to be

effective in a live hospital setting.

This thesis explores the aspects of unprocessed hospital notes that make models less ac-

curate and slower to train, and using the knowledge gained of the semantics of these documents,

proposes a novel model architecture that addresses the most common of those problems to cre-

ate a model that can be used directly on hospital medical data without any intermediate human

processing.

Traditional machine learning models have trouble processing human language. The in-

vention of transformers have made NLP possible by allowing models to understand connections

between ideas in text even when they’re far apart. However, the flexibility that allows transformers

to handle the complexities of human language also makes the highly sensitive to things in the data

they are trained on that are undesirable, like typos. We combat this by using the semantic knowl-

edge we have gained about the noise present in raw hospital notes to create software that reduces

the intensive manual data curation that would normally be necessary to feed hospital data into large

language models into model hyperparameters that can be tuned to account for the anti-patterns of

similar patient document datasets.
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CHAPTER 1: INTRODUCTION

Classification, language processing, and neural networks are all topics common within the

domain of machine learning, and any problem setting involving all three introduces unique chal-

lenges. These challenges are more significant in the setting of medical text, where outcomes can

be life or death and the data is inherently complex. Medical texts are rich with domain-specific

language and carefully-structured data that often escapes the already convoluted structure of hu-

man language, such as tables. On top of the complications inherent to medical text, there is an

additional layer of complexity when working with raw, unprocessed data such as the text medical

practitioners create and reference while interacting with patients. Many experiments with natu-

ral language processing (NLP) are performed on carefully-curated datasets that are checked by

humans for accuracy, structural uniformity, and other factors for use with scientific experiments.

In order to make the jump from research to practical application, exploration must be done

into where NLP models fall short when using raw data from actual patients, and how to over-

come these shortcomings. This paper aims to bridge the gap between theoretical advancements

and practical application by investigating the efficacy of various neural network models and train-

ing techniques when performing common classification tasks in medical settings, and investigate

what can be changed in models to facilitate higher performance on non-curated hospital data. We

do so by:

• Examining the differences between unprocessed hospital data and curated data from a publicly-

available research dataset.

• Creating a system that reduces manual data curation tasks to a series of automated pre-

processing steps with hyperparameters that can be tuned to accommodate the differences

between different hospitals’ datasets.

• Creating a model which incorporates this automated processing system into its training and

inference processes to improve overall performance and speed.
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To evaluate its effectiveness in improving performance with cohort selection, we perform eval-

uation with multiple large language models and compare multiple evaluation metrics with and

without our semantics-guided processing.

Our goal is to increase the speed and accuracy of medical information retrieval and decision

support systems. Such improvements have the potential to increase the pace of medical research

and directly improve the care given to patients. We show this potential by examining the problems

of binary classification and extreme multi-label text classification in medical settings.

Classification In The Domain of Text

Classification is one of the oldest problems that scientists have applied neural networks to.

From the early days of machine learning, the task of categorizing data into distinct classes has been

central to developing intelligent systems. In the context of text, classification encompasses a broad

range of applications, from spam detection in emails to sentiment analysis in social media posts.

Early neural networks, such as simple feed-forward architectures, laid the groundwork for these

tasks by learning to identify patterns and make predictions based on labeled examples. However,

as text data grew in complexity and volume, more sophisticated models were required. The ad-

vent of recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) marked

significant progress, allowing for the handling of sequential dependencies and contextual informa-

tion. More recently, transformer-based models like BERT have revolutionized text classification

by leveraging self-attention mechanisms to capture intricate relationships within the data. This

evolution underscores the dynamic nature of text classification and highlights the ongoing need

for advancements in neural network architectures to address the challenges posed by increasingly

complex and diverse textual data.

Classification in particular has unique opportunities when working with text due to the

way the labels themselves often have text descriptions. Unlike numerical or categorical labels,

text-based labels provide rich, contextual information that can enhance the classification process.

This descriptive nature allows for a more nuanced understanding of the categories, facilitating the
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use of natural language processing techniques to better align model predictions with the semantic

meaning of the labels. For instance, in medical text classification, labels such as ”Diabetes Type

2” or ”Hypertension” can be connected with definitions and examples of said conditions included

in the training data. By incorporating these textual descriptions into the learning process, neural

networks can leverage additional context to improve classification accuracy and relevance, even

when working with labels that are not common in the data on which they are trained.

Binary Classification

Binary Classification is the simplest-possible classification task. The model must predict a

value of 0 or 1 for each data point. This can be a representation of a model predicting something to

be True or False, answering a question ”yes” or ”no”, or identifying whether or not the given data

point should be assigned some category that the model has been trained to sort data into. Binary

Classification, while simple, is the backbone of all other classification tasks. Tagging an image,

for instance, can be modeled as a series of Binary Classification tasks (assigning 0 or 1 to each

potential label). Cohort Selection, one of of the clinical tasks we trained models to perform, is also

a Binary Classification task.

Cohort Selection: Definition And Motivation

Cohort Selection is a particular type of classification task often required of medical re-

searchers. When conducting a study, it is necessary to select patients whose condition is relevant

to whatever the study is being conducted to investigate. This often requires manual searching by

researchers examining patient files one by one in order to determine whether each patient should

be selected for the cohort of subjects studied.

As a repetitive task with an output determined entirely by the information in the text of

a patient’s medical history, cohort selection is a prime opportunity for use of text-based classifi-

cations systems. A model developed to aid in the process of cohort selection would not need to

out-perform a human on its own in order to make a valid contribution; it need only lighten the
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load on researchers. A model that merely rules out half of the patients that are certain not to be

eligible for cohort selection is already saving potentially dozens of man-hours of work for medical

researchers.

As we had the chance to work directly with medical professionals in this experiment, we

focused on the domain of medicine in which they already had experience with cohort selection

methods research: Heart Failure.

Extreme Multilabel Text Classification

Extreme Multilabel Text Classification is an advanced subset of text classification that ad-

dresses the challenge of classifying a text document with any number of a vast set of possible

labels. Unlike traditional multilabel classification, where the number of labels is relatively small,

XMTC deals with scenarios where the ’label space’ is enormous, often comprising thousands or

even potentially millions of categories. This complexity necessitates novel algorithms and tech-

niques to efficiently handle the scalability and sparsity inherent in such problems. Key approaches

in XMTC include leveraging sparse representations, hierarchical structures implicit in the labels

themselves, algorithms that can handle high-frequency and low-frequency labels within the same

set, and efficient approximation methods to manage the computational and memory constraints

associated with such large label sets.

The development of XMTC has significant implications within various domains, including

assigning tags or categories to text documents in databases, product recommendation systems, and

patient diagnosis. By improving the ability to handle and predict a large number of labels with

high precision, XMTC advances contribute to more effective and nuanced data analysis, ultimately

enhancing the capabilities of systems that rely on complex text classification tasks.

ICD Codes: Definition And Motivation

The ICD code system [27], developed by the World Health Organization (WHO), is a tool

in healthcare for categorizing diseases and health-related conditions. This code system organizes
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conditions into a structured hierarchy, facilitating precise coding and consistent documentation

across various healthcare settings. The ICD codes are used for a multitude of purposes, including

epidemiological research, health statistics, and clinical decision-making.

Containing a variety of codes large enough to effectively differentiate between patient con-

ditions with nothing other than the single label assigned, ICD Codes are an archetypal XMTC task.

Each ICD code can be assigned as a label, and patient documents can be assigned any number of

labels/codes depending on how many conditions they have suffered from at any point during the

period where the hospital recorded information on them.

The classification system undergoes periodic updates to incorporate new medical knowl-

edge and advancements, ensuring its relevance and accuracy in reflecting the evolving landscape

of health and disease. This means that any technology built to be incorporated into medical systems

utilizing ICD code assignment must not only be configured to correctly understand current ICD

codes, but also have the potential to be updated for further updates to the ICD schema. ICD coding

problems are not subject to the usual machine learning rule of the current version being the worst

to ever exist; If not updated, ICD-based models will lose their effectiveness even if competitors are

not developed.

In machine learning research, it is common for researchers to use ICD codes as the labels for

training classification models, enabling the development of predictive algorithms and diagnostic

tools. By aligning medical data with ICD classifications, researchers can enhance the accuracy and

interpretability of their models, as well as facilitate cross-study comparisons using the predicted

ICD codes as a common ground for contrasting performance.

ICD codes are also often used for billing in hospitals in a bureaucratic pipeline that requires

the recruitment and training of specialized workers trained to assign ICD codes to documents in

the best case, and requires that doctors themselves take time away from treating patients to look up

and assign ICD codes to their documents in the worst case. This means that any developed model

capable of working with ICD labels has the potential to significantly reduce the time it takes for

patient data to be processed by hospitals, and also potentially reduce lost time and money caused
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by human error in diagnostic paperwork.

Expert Knowledge And Testimony

We were given the opportunity to work directly with medical practitioners for the devel-

opment of our model. In addition to the data on heart failure liklihoods provided by heart failure

domain experts, we received testimony from several practicing doctors on the role that ICD code

assignment plays in their job, and the impact that a software improvement could have on their

practice.

ICD codes are a vital part of hospital billing, and require trained personnel to ensure correct

and quick assignment of codes to patients based off patient data. This means an additional role that

hospitals have to hire for, train, and pay, and any complications with those 3 responsibilities can

significantly delay hospital processing of patient data, causing additional lag time in an already

overtaxed medical system.

Medical practitioners at the Minneapolis Clinic of Neurology provided an alternative per-

spective coming from a smaller hospital. Working at a facility with fewer than 5 doctors as of the

time of the interview, the clinic does not do enough business to afford staff who hold the explicit job

of code assignment. The only employees on staff with enough training to assign codes to patient

paperwork is the doctors themselves. This means that the task of code assignment increases the

amount of time doctors need to spend on each patient, and reduces the number of patients doctors

have time to see in a day. For smaller clinics like these, software that can accelerate the process

of Code Assignment while maintaining accuracy has the opportunity to help alleviate the long-

standing issue of smaller hospitals having extremely long wait times by increasing the number of

patients doctors can afford to book in a day.

The testimony of medical personnel also helped to inform our approach to the problem

of Cohort Selection. We were advised that training a model which selects too many patients for

a cohort is preferable to a model that is more discerning, but leaves out too many HF-positive

patients.
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Challenges of Medical Data

Working with medical text presents unique challenges not present in more general text

processing. One major difficulty is the highly specialized and jargon-heavy nature of medical lan-

guage, which often includes complex terminologies, abbreviations, and acronyms that are specific

to various medical fields and conditions. This specialized language can be a barrier for NLP sys-

tems, which need to be able to accurately interpret and classify medical terms and their relationship

to each other to extract meaningful information. Additionally, medical texts frequently involve nu-

anced descriptions of symptoms, diagnoses, and treatments, which require a deep understanding

of both medical knowledge and contextual nuances in addition to the capacity to determine the

difference between highly-similar terms.

In contrast, legal texts and novels, while also complex, tend to present different types of

challenges. Legal texts often involve formal, uniformly-structured language with specific jargon re-

lated to laws and regulations, which can be challenging due to its precision and context-dependent

meanings. Novels, on the other hand, are characterized by their rich, narrative-driven language

and varied writing styles, which can pose challenges in terms of stylistic variability and thematic

analysis. However, medical texts are distinctive in their demand for a high level of domain-specific

knowledge and the need to accurately capture the subtleties of medical information, making them

particularly challenging for text classification and analysis in the context of machine learning and

healthcare applications.
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CHAPTER 2: BACKGROUND

Related Works In NLP And LLMs For Clinical Text

Our choice of architecture is informed by past research in machine NLP and medical re-

search. In order to best utilize all knowledge available within medical text, we reviewed previous

models and techniques to evaluate their suitability for our problem setting.

Bag of Words

The Bag of Words (BoW) approach is one of the oldest techniques in text processing and

NLP that represents text data in a simplified, numerical format [17]. In BoW, a text document is

transformed into a vector based on the frequency of words contained within it, completely disre-

garding the order and grammatical structure of the words. Each unique word in the text dataset

is treated as a distinct feature, and the document is represented by a vector that counts the occur-

rences of these words. This method enables the conversion of text into a simple numerical format

suitable for machine learning algorithms, allowing for straightforward implementation of classi-

fication, clustering, and other analytical tasks. Despite its simplicity, the BoW model has proven

effective for various NLP applications, serving as a crucial building block in text analysis.

However, the Bag of Words approach also has many significant limitations, primarily related

to its disregard for word order and context. By treating each word as an independent feature,

BoW fails to capture syntactic and semantic relationships between words, which can be crucial

for understanding the meaning of a text. Additionally, the size of the vectors is dependent on

the number of different words present in the document, which can increase computational costs

and pose challenges in terms of memory usage when working in a text setting involving many

domain-specific terms.

To address these issues, many subsequent methods would represent text documents by re-

ducing words (or atoms of words, called ’tokens’) to individual vectors and would represent the

overall document as a sequence of these vectors in order to provide more nuanced representations
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of text, incorporating contextual information and reducing dimensionality. The first major example

of this formulation of text processing was Recurrent Neural Networks.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been instrumental in advancing text processing

by addressing the limitations of the Bag of Words (BoW) approach [33]. RNNs are designed to

capture the ordered nature of text data. By processing text in a sequential manner and maintaining

a hidden state that evolves over time, RNNs can model the positional relationships between words

and their significance in-context. This ability to capture context and word order allows RNNs

to generate more nuanced representations of text, which enhances the performance of NLP tasks.

Variants of RNNs, such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units

(GRUs), have further improved the handling of long-range dependencies and mitigated issues like

vanishing gradients, making RNNs even more effective for complex text processing applications.

Despite many advantages over previous approaches, RNNs come with certain drawbacks.

One notable limitation is their computational inefficiency, particularly with long sequences, due

to their sequential structure being incapable of parallel processing. This inefficiency can lead to

longer training times and increased resource requirements. Additionally, while RNNs excel at cap-

turing contextual information, they may still struggle with very long-term references and require

careful tuning and architecture design to avoid overfitting and retain generalization capacity.

To address these challenges, newer architectures such as Transformers have been intro-

duced, offering improved scalability and parallelization capabilities.

Attention Mechanisms

Attention mechanisms have revolutionized machine NLP particularly in conjunction with

transformer-based model architectures. At their core, attention mechanisms enable models to dy-

namically weigh the significance of different input tokens when generating output representations.

This is particularly crucial in processing sequences of varying lengths, as it allows the model to
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focus on relevant parts of the input while disregarding less pertinent information. The fundamen-

tal operation involves computing a set of attention scores that quantify the relationships between

tokens, which are then normalized to produce a weighted sum of the input representations. This

process not only enhances the model’s capacity to capture contextual relationships but also facili-

tates parallel processing, bringing the computational cost of working with transformers back into

the realm of feasibility for modern hardware.

Transformers And LLMs

Transformers are the advancement responsible for the modern revolution in the field of

machine NLP, fundamentally altering how text data is processed and understood. Introduced by

Vaswani et al. [39] in 2017, the Transformer architecture leverages ’self-attention’ mechanisms

to weigh the importance of different words in a sequence relative to one another. This enables

the model to capture long-range dependencies and contextual relationships more effectively than

previous architectures. Transformers eschew the sequential processing characteristic of RNNs,

allowing for parallel processing of data, which significantly enhances training efficiency and scal-

ability. The core components of the Transformer model include multi-headed self-attention layers

and feed-forward neural networks, which collectively enable the model to generate rich, context-

aware representations of text.

In transformer-based language models, often simply referred to as LLMs, attention mech-

anisms are implemented through multi-headed attention layers, which allow the model to simul-

taneously operate on different parts of the input. Each head learns to focus on various aspects of

the input, contributing to a richer and more nuanced understanding of language. The self-attention

mechanism enables each token to interact with every other token in the sequence, effectively cap-

turing long-range dependencies without the limitations imposed by sequential processing found in

earlier architectures like recurrent neural networks. This flexibility is pivotal for tasks requiring

contextual comprehension, such as translation and summarization, as it empowers LLMs to gen-

erate outputs that are coherent and relevant within local context without sacrificing compatibility
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with text present outside the current context. The integration of attention not only enhances model

interpretability by allowing researchers to examine which tokens influence specific outputs but also

lays the groundwork for the very transfer learning that we take advantage of in our pipeline, where

models pre-trained on more general text can be fine-tuned for a variety of downstream tasks, often

with more setting-specific data.

Despite their transformative impact, Transformers come with the challenge of yet greater

computational and memory demands, which can be substantial given the model’s reliance on the

self-attention mechanisms that scale quadratically with sequence length. This can lead to high

costs in both training and inference steps, particularly with larger models and datasets. Addition-

ally, while Transformers excel in capturing complex contextual relationships, they require large

amounts of data to train effectively and avoid over-fitting. Being a relatively recent innovation, re-

search remains focused on improving the efficiency and scalability of Transformer models through

techniques such as sparse attention and model distillation/quantization to address these and more

limitations while continuing to leverage their powerful capabilities in understanding and generating

natural language.

LoRAs

LoRA, or Low-Rank Adaptation [18], is a technique designed to fine-tune large language

models (LLMs) efficiently by introducing low-rank matrices into their architecture. By leveraging

the idea that the weight updates during training can often be approximated as low-rank modifica-

tions, LoRAs allows researchers to adapt pre-trained models to specific tasks without incurring the

high computational costs associated with full model retraining. This approach not only reduces

memory usage and speeds up training but also maintains performance levels comparable to tradi-

tional fine-tuning methods, making it particularly attractive for resource-constrained environments.

Training LoRA involves augmenting the original model’s weight matrices with additional

low-rank matrices that capture the essential adaptations needed for a specific downstream task.

During the training process, the updates to these low-rank matrices are learned while keeping
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the majority of the original model parameters frozen. This selective tuning enables practitioners

to achieve rapid convergence with fewer training samples and significantly lower computational

overhead. Additionally, LoRA’s modular nature allows for easy integration into existing architec-

tures, promoting flexibility and scalability in various applications, from sentiment analysis to more

complex tasks such as machine translation.

The implications of LoRA in NLP are significant, as they turn a task that would involve

training the entirity of a model into a task that can leverage larger models without requiring the full

compute power of training them. Empirical studies have shown that LoRA can maintain or even

enhance performance metrics while requiring only a fraction of the resources typically necessary

for fine-tuning. As the field of machine learning continues to evolve, LoRAs stand out as a pivotal

advancement that not only addresses efficiency concerns but also fosters innovation by making

powerful ML capabilities more accessible.

Previous Works In Medical NLP

CorNet

CorNet [42] represents in interesting innovation in XMTC models. Instead of changing

model architecture with the end-goal of better capturing information about the text provided to

the network for classification, CorNet adds a new layer to an existing model (referred to as the

backbone model) with the express purpose of learning how the labels of the dataset correlate with

each other during training. Traditional deep learning approaches for XMTC often overlook the

relationships between labels, treating each label as an isolated prediction. CorNet addresses this

limitation by integrating a specially-constructed module - the CorNet module - at the output of the

prediction layer, which learns and utilizes learned label correlations to refine and enhance the initial

label predictions generated by the deep model and output refined predictions. This approach allows

the model to make an initial prediction and then refine its label predictions based on what labels

it has learned are correlated, leading to more accurate and contextually relevant label assignments.

This also means that more labels lead to more information being provided to the CorNet module,
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Figure 1. Diagram of the MeSHProbeNet module architecture[43]

making CorNet both perfectly-suited for XMTC tasks and less effective on others.

By capturing and utilizing label correlations, CorNet has been shown to reliably enhance

prediction quality at loss convergence [42]. The initial publication showed significant performance

improvements in general text settings [8] using multiple backbone models to generate the initial

predictions. The difference in performance as well as the final accuracy varied between different

backbones and datasets, but in all cases CorNet showed either a consistent improvement in or

equal performance. The fact that CorNet never once showed a decrease in performance makes it

an appealing and nearly downside-free method of augmenting XMTC pipelines.

In our experiments, we used the following backbones for CorNet:

MeSHProbeNet

MeSHProbeNet [43] is an XMTC model specifically designed for the classification of

biomedical texts. It employs a multi-channel convolutional neural network (CNN) that integrates

both local and global context representations of text (shown in Figure 1), which gives it a method

by which to capture intricate relationships among various MeSH terms. By leveraging the transfer

learning that comes with with pre-trained embeddings, MeSHProbeNet enhances feature extraction

from biomedical literature, thereby improving the model’s ability to classify texts with complex
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Figure 2. Diagram of the AttentionXML model architecture[46]

terminologies and hierarchical structures inherent in MeSH.

MeSHProbeNet was validated in its original publication on a variety of biomedical datasets,

demonstrating its effectiveness in accurately assigning relevant MeSH terms to articles. The model

outperforms traditional classification approaches and also showcases its robustness in handling

datasets with varying label distributions, establishing MeSHProbeNet as a valuable tool for in-

formation retrieval in biomedical research. This work emphasizes the importance of specialized

models for domain-specific tasks, contributing to advancements in automated literature classifica-

tion and improving the accessibility of biomedical knowledge.

AttentionXML

AttentionXML [46] is a novel framework for multi-label classification that leverages at-

tention mechanisms to efficiently handle large-scale label spaces. It uses a hierarchical attention
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model (shown in Figure 2) that captures both local and global label dependencies which enhances

the learning process by focusing on the most relevant words and phrases for each label.

The experimental results indicate that AttentionXML achieves superior performance in both

precision and recall compared to (at the time) existing multi-label classification methods across

several benchmark datasets. The hierarchical attention mechanism effectively captures complex

label correlations, which is critical for improving classification accuracy in medical settings. The

model is also shown to be efficient, demonstrating its capability to reduce training time signifi-

cantly while maintaining high-quality predictions. These results make the model a good candidate

for backbone testing with CorNet in medical settings.

General Text Datasets Used

AmazonCat

AmazonCat is the name of a dataset provided by Manik Varma’s Extreme Classification

Repository[8]. AmazonCat contains the data necessary to train a model to perform the task of

automatically predicting the category that should be assigned to a newly-listed product on Amazon

based on the text content of the fields provided.

Amazon product descriptions and titles are written for a general audience in mind with the

objective of appealing to as many customers as possible, and Amazon carries one of the widest

variety of products of any store. This combinations of wide subject matter and simple language

makes AmazonCat an ideal dataset for evaluating a model’s capacity for generalized learning be-

fore evaluating it against more specialized datasets.

EUR-Lex

EUR-Lex [10] is an extensive collection of legal documents related to the EU, primarily

focused on legal texts. This repository includes treaties, regulations, directives, and case law,

providing a rich dataset for linguistic and legal analysis.

Legal texts are filled with specialized terminology and syntactic structures far more complex
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than common speech that can pose challenges for models. This means that the style of language

present within EUR-Lex poses similar challenges to medical text and allows us to test the effec-

tiveness of models against complex language while remaining distinct from the medical text we

will contrast performance with.

Medical Text Datasets Used

PubMed

PubMed [32] is a comprehensive resource within the biomedical domain, offering an ex-

tensive repository of biomedical literature and research articles. It encompasses over 35 million

citations from a diverse array of sources, including peer-reviewed journals, clinical studies, and

systematic reviews. The dataset primarily includes abstracts and bibliographic metadata from ar-

ticles, with a focus on research in medicine, life sciences, and related fields. Each entry typically

contains important metadata such as titles, authors, publication details, MeSH (Medical Subject

Headings) terms, and abstracts, which collectively provide a rich source of structured and unstruc-

tured text data. This wealth of information facilitates detailed exploration of biomedical topics and

trends, allowing for sophisticated analyses and insights into medical research and practice.

In the context of natural language processing (NLP) and machine learning, PubMed’s dataset

offers significant potential for enhancing text comprehension and analysis capabilities. The struc-

tured metadata, including indexed terms and categorical classifications, provides a framework for

developing and training algorithms that can parse, categorize, and interpret complex biomedical

terminology and relationships. The unstructured textual data, particularly abstracts, presents chal-

lenges and opportunities for models aimed at understanding and generating human-like text. Ef-

fective NLP models must navigate domain-specific jargon and intricate scientific concepts, making

PubMed a valuable resource for developing systems that require an advanced grasp of specialized

language and contextual meaning.

Moreover, the diverse range of publications represented in PubMed enables the develop-

ment of machine learning algorithms that can identify trends, correlations, and emerging topics
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within the biomedical field. By leveraging the dataset’s depth and breadth, researchers can train

models to perform tasks such as document classification, information retrieval, and semantic sim-

ilarity assessments with greater precision. As such, PubMed not only serves as a critical dataset

for advancing biomedical research but also contributes to the broader field of text comprehension,

offering insights into how machines can achieve a nuanced understanding of complex, domain-

specific language.

Our work with MeSH focused on using the text of the abstracts to classify documents by

identifying the MeSH terms that should be assigned to them. MeSH terms provide a controlled vo-

cabulary that systematically categorizes articles into predefined topics, facilitating the organization

and retrieval of information. These hierarchical descriptors enable more accurate classification of

documents by associating them with specific medical concepts, diseases, treatments, and research

methodologies. When integrated with the textual content of abstracts, which offer detailed descrip-

tions of study objectives, methodologies, and findings, MeSH terms augment the ability of machine

learning models to categorize and interpret biomedical literature. This combination allows for re-

fined classification strategies, where algorithms can leverage both the structured tagging provided

by MeSH and the semantic richness of the abstracts. Consequently, models can achieve higher

precision in tasks such as topic modeling, literature summarization, and trend analysis, ultimately

leading to more effective and contextually relevant insights in the biomedical domain.

MIMIC-III & MIMIC-IV

The MIMIC-III [20] and MIMIC-IV [1] datasets are both extensive critical care databases

that provide a wealth of de-identified patient notes, perfect for training models in medical NLP.

MIMIC-III, which encompasses data from over 40,000 ICU admissions from 2001 to 2012, in-

cludes comprehensive clinical information such as vital signs, laboratory results, medications, and

notes from healthcare providers. MIMIC-IV builds upon this foundation, extending the dataset

through 2019 and incorporating additional features like updated diagnosis codes and more granu-

lar time-series data. Together, these datasets offer a rich and verbose perspective on patient care in
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intensive settings, enabling the development and validation of predictive models that can augment

decision-making steps in critical care environments that are currently dependent entirely on human

effort.

In comparison to other medical datasets, the MIMIC-III and -IV databases stand out for

their scale, granularity, and temporal coverage. MIMIC’s extensive and continuous data collection

from ICU settings offers unique insights into the dynamics of critical illness and intensive care

management. The detailed time-series data and the wide array of clinical variables included in

MIMIC-III and MIMIC-IV facilitate sophisticated analyses of patient progression and personalized

treatment plans. This level of detail and breadth makes the MIMIC datasets a critical resource for

training models with the aim of lending a deeper understanding of how patient factors (diseases,

medications, pre-existing conditions, etc) interact.

University of Iowa Hospital And Clinic Data

We were granted access to select files from the medical database used at University of Iowa

Hospitals and Clinics for use with our experiments. This data gave us a unique opportunity to work

with the kind of text that a machine-learning-based NLP model would actually need to process in

a live-setting in order to make a meaningful impact on the ability of medical professionals to

diagnose and treat patients in a timely and accurate manner.

Challenges of Working With Raw Hospital Data

One notable challenge of working with the total output of a hospital’s database is the sheer

scale of text to work with. As we treated each patient as a single data point and combined all of

their medical documents for input into the model (discussed later), the per-patient text document

length varied from thousands of tokens to hundreds of thousands of tokens. Document length is in

itself a challenge, however developing a classification technique that can work equally well with

documents that are powers of ten apart in length is another challenge unto itself.

Sourcing text directly from a real hospital without the aid of data scientists cleaning and
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correcting the dataset means that an approach robust against noise is also required. While MIMIC

([1]) was curated to be accurate in content and clean composition, the data from the hospital is

not proofed against mistakes in spelling or medical accuracy. Piecemeal inspection of individual

clinical notes found mundane typos and other entry errors such as inconsistent spelling of names,

multiple spaces in a row in a sentence, periods in places that commas should be, etc. Use of

shorthand text was also noted, such as incomplete sentences and grammatically-incorrect phrases

containing only a few key words.

Errors on the part of the medical practitioner entering the text is not the only source of

potential problems. Certain categories of clinical notes contained information that was technically

relevant to the potential for heart failure diagnosis, but were exceedingly long without containing

much information. An example of such a note would be the instructions for a dialysis machine.

While it is meaningful and important to know that dialysis was a part of a patient’s treatment,

the instruction manuals always have the same text. This means that the ’information density’ of

such documents is low, taking thousands of tokens to convey meaning effectively equivalent to

”the patient was also on dialysis”. Attention mechanisms can dampen how much low-information-

density text affects the output of the model, but these models still have limits on how much text

they can process at once. Thousands of tokens of near-meaningless text can take up a large chunk

of a model’s context window and hamper its ability to process long-range context by limiting how

many other documents can be processed at once.

The semantic knowledge of the notes and the patterns of their content is what we seek to

leverage in order to guide the LLMs to train on their contents more efficiently. Analyzing the

difference between curated datasets provided to the public for training purposes and raw data that

is completely unchanged from how it is originally entered is what we do to close the difference in

performance between classifying the ’cleaned’ data and classifying the ’raw’ data.

The labels for the patients were provided by the heart failure domain experts we collaborated

with on this project. They derived a regex-based method that would assign patients a Heart Failure

Rating (HFRating) between 0 and 7 based on how many signs of heart failure they displayed. These
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ratings came from all patient information except the text of clinical notes to prevent a model trained

on the notes and generated ratings from simply learning to re-create the regular expressions. The

information the ratings were based on was comprised on data such as the administration time and

dosage of medication and visit times. While the accuracy of patients rated at a 3-4 has not been

fully calculated, manual investigation showed that none of the patients given a HFRating of 0 were

positive for heart failure while all of the patients rated at 7 were considered positive by consulted

medical professionals.

Review of Previous Research

Artificial Intelligence and Medicine are both areas of extreme interest in research, and the

overlap between them is thusly extremely large in scale. In addition, with LLMs being a rela-

tively new innovation, there is much unexplored territory. Every quarter there are many papers

exploring every aspect of LLMs, from their training methodologies to their application in clini-

cal settings, revealing both their potential applications and limitations [35] [26]. As these models

become increasingly prevalent, understanding their capabilities and shortcomings is essential for

their effective implementation in healthcare contexts [45] [19].

In order to develop AI-based technology for medical application, we must have a compre-

hensive and robust framework for evaluating all aspects of the technology we are implementing,

from accuracy to efficiency to speed. However research suggests that traditional benchmarks of-

ten fall short in assessing the nuanced capabilities required for clinical reasoning [35] [29] [13].

Reliance on automated evaluations may overlook critical aspects of model functionality, leading

to a misrepresentation of their true abilities. Therefore, there is a growing advocacy for both more

flexible evaluations. Researchers have proposed everything from human-centered methods that

incorporate open-ended questioning yielding insights into how well these models perform in real-

world scenarios [35], to adaptive tests that change their approach over the course of testing to

adapt to ongoing performance of the evaluated models [49], and evaluation utilizing other LLMs

fine-tuned on the task of grading output quality [40].
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There is also ongoing research into how n-lingual models perform differently in domain-

specific tasks. Large-scale bi-lingual models sophisticated enough to attempt competition with

state-of-the-art LLMs have already been trained [3] and show impressive performance, but there

are many ways to handle mixtures of languages within a dataset, and the most effective way to

train an LLM to handle multiple languages within a single context is not yet a solved problem

[37]. With the increasingly-global nature of research and the staggering number of languages

spoken globally, there is still ongoing research into when medical systems become more accurate

simply by translating non-english medical text into english before being fed into a monolingual

model [30]. Any research done into automated medical systems will have to consider how it will

approach this language barrier problem before seeing truly wide-scale deployment.

Moreover, the capability of LLMs to adapt and provide accurate medical information can

be significantly enhanced when evaluated against specialized datasets (10, 11). Studies indicate

that models fine-tuned on specific medical data can outperform their generalist counterparts in

tasks like radiology interpretation, highlighting the importance of context in evaluating model

performance (12, 13). This tailored approach is not only essential for accurate medical advice but

also for ensuring that LLMs are reliable tools in clinical practice.

The methodologies for training LLMs have evolved in response to the resource constraints

often faced in healthcare settings. Training a model from scratch is not only costly in terms of com-

putational resources [34] but also time-intensive. Research shows that fine-tuning existing models

can lead to outcomes superior to training an LLM from scratch with medical text while being a

more efficient method of training [25]. This approach allows healthcare organizations to leverage

pre-trained models that have already learned from vast amounts of data, thereby conserving both

time and energy. This approach has already been taken by several hospitals, choosing to use patient

data local to their own practice to train LLMs for medical use [36], and in the process have shown

that generalist monolingual english models can be fine-trained for use with other languages. It has

also been shown that even without fine-tuning, generalist models show surprising efficacy at med-

ical tasks even without fine-tuning on medical-data [26] [19]. Given this information, it is not yet
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clear what the best way to fine-tune a generalist model for medical use is, as this research seems to

indicate that training a generalist model on medical text too much may eliminate the performance

boost granted by the generalist foundation of the model.

In addition, training and/or fine-tuning models for medical use is significantly restricted by

the availability of data, most often restricted specifically due to privacy. In addition to the simple

solution of local hospital training mentioned previously [36], the use of federated learning tech-

niques has emerged as a promising solution to address privacy concerns associated with sensitive

medical data [29]. Research into optimal ways of augmenting training data without overstepping

privacy boundaries remains ongoing.

As LLMs find their way into clinical decision-making processes, the demand for inter-

pretability becomes increasingly urgent. Healthcare professionals need to trust the recommenda-

tions made by AI systems, which means understanding how these models arrive at their conclu-

sions. Innovative approaches to model interpretability such as chain-of-thought reasoning frame-

works aim to simulate the diagnostic processes of human practitioners [16] [21]. Training LLMs

to solve problems via a chain of thought reminiscent of human reasoning has been shown to both

increase performance [6] and also create a more transparent warrant for the conclusion at which

the LLM arrives, allowing for more trust in an automated system and more effective human-AI

collaboration [11].

Factual accuracy in LLM outputs is a problem of supreme importance. Techniques that

augment LLMs with retrieval mechanisms have shown promise in enhancing the reliability of in-

formation provided by these systems [4]. By ensuring that LLMs can cross-reference their outputs

with established medical knowledge, healthcare providers can feel more confident in the guid-

ance offered by AI tools. This accuracy is particularly crucial in high-stakes environments where

incorrect information can lead to severe consequences for patient health.

Capacity for medical reasoning is still being explored as both a problem and a solution.

Training LLMs to process text with the direct goal of producing diagnoses accurately has been

shown not to actually convey any deep understanding of medical concepts and reasoning ability
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to LLMs [21]. To solve this issue, many architectural and procedural changes have been pro-

posed to enhance reasoning ability with the eventual goal of increasing the capacity of LLM to

solve more complex multi-step problems, which are often necessary in medical settings. Often

this is done through Chain-Of-Reasoning approaches (also called chain-of-thought or chain-of-

diagnosis). This ‘chain’ approach has been shown to increase reasoning ability and problem solv-

ing capacity in many settings [47] [4] including medical.

Despite promising advancements, several challenges remain. Issues such as model biases

and the potential for misalignment between LLM outputs and clinical standards remains to be ad-

dressed [41] [7]. While tests have found that fine-tuning generalist models often out-perform mod-

els trained on medical data from scratch, these generalist models also often have built-in “align-

ments” to keep models from generating content considered undesirable by either the company

training the model or the country in which said company is based, and these alignments can often

compromise the accuracy of model outputs [7]. We saw this alignment-accuracy problem with

our own evaluations running against different models that had taken different measures to handle

alignments.
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CHAPTER 3: METHODOLOGY

Extreme Multi-label Text Classification

Problem Formulation

The formulation of the task of ICD code assignment is virtually identical to every other

XMTC task; Given a superset of all valid labels L and a set of documents D, for each document

di ∈ D we must find the correct subset of labels Li ∈ L that should be assigned to that document,

minimizing the number of incorrectly-assigned labels and missed labels eerror = |(L̂i ∪Li)− (L̂i ∩

Li)| between the predicted labels L̂i and the true label set Li.

This is often done by predicting a label ’confidence value’ ζl,i for every label l ∈ L and

assigning each document the n labels with the highest predicted confidence values.

This means such classification algorithms must learn the function h where ζi,l = h(di, l).

Model Architecture

Re-creating the results of the initial CorNet paper [42] was one of our first experiments.

Using the same list of backbone models and datasets as the original authors, we found consistent

improvements on top of the backbone models alone. After reaffirming the soundness of the theory

behind the architecture, we transitioned to medical text to test to what degree the improvement

would transfer.

It stands to reason that as CorNet learns the correlation between models, it has potential

to improve performance so long as the labels are not entirely independent. When labels repre-

sent medical topics, CorNet has the potential to assist in learning correlations that would appear

obvious to casual observers (such as correlation between surface wounds and symptoms of blood

loss stemming from the blood lost through the wound, etc) and previously-unknown connections

between medical concepts that could lead to worthy research in their own right. For this reason the

performance of CorNet was tested against both PubMed[32] and MIMIC IV[1].

ControlNet [48] and IPAdapters [44] are image generation technologies that were quickly
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adopted by end-users of image generation technology immediately after their use, and even as

newer and much more advanced models have been released, ControlNet and IPAdapter compati-

bility [22] patches [14] have been made to use the comparatively old techniques with these newer

models. This shows that less-novel techniques that augment instead of replacing current techniques

have potential to make a more lasting impact than just an iterative replacement for the state of the

art.

Cohort Selection

One of the primary goals of our research was to improve cohort selection for medical stud-

ies. We worked closely with doctors at University of Iowa Hospitals and Clinics at which we were

granted access to the patient information database. While the database contains the sum of all med-

ical information available regarding the patients health, our focus was on clinical notes recorded

for each patient and the information that could be extracted from them using text models, namely

large language models.

The medical experts we worked with were focused on automatically predicting whether a

given patient suffered from heart failure based only on the text of the notes that were written about

them during their hospital visits. This information could then be used to select patients for testing

and studies automatically, a process which usually involves doctors going through patient files one

by one, by hand.

This means that automation of this process could potentially speed up medical research

significantly by eliminating the overhead associated with setting up a medical study. The initial

experiment was focused on identifying heart failure, but given the widespread use of LLMs in

general context [24] [15], there is indication that such a tool could be easily scaled to identify other

traits given training and information.

Problem Formulation

At its largest scale, the task of cohort selection can be expressed as

25



C = {p ∈ P : f (p) = true}

where C is the set of patients to be included in the cohort, P is the set of all patients, and f

is some predicate that decides whether a given patient should be included in a cohort.

For our purposes, it is convenient to define f as ft(p) = ζp > t, a simple predicate filtering

patients based on whether some ”confidence rating” is above the given threshold t.

This allows researchers using this formula to adjust the threshold based on their needs, using

a higher threshold when it is desirable to have as few patients wrongly-included in the cohort as

possible, and using a lower threshold when it is desirable to miss as few of the patients that should

be included as possible.

This variable ζp represents the label data provided to us by medical experts, and it is the

confidence estimation function h(p) such that ζp = h(p) which our model must learn to approxi-

mate.

In our experiments, we defined h(p) as

h(p) =2d∈Dphdoc(d)

Where we use 2 to represent some aggregation function (such as summation or averaging),

and hdoc is a function that generates a confidence value for a given text document d coming from

the set of documents Dp, all text documents associated with a patient.

Thus the full formulation of the problem is

C = {p ∈ P : ((2d∈Dphdoc(d))> t)}

where we trained and evaluated our LLMs to approximate hdoc for the hospital documents.
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Fine-Tuning LLMs

Fine-tuning LLMs has become a major area of research given the proven efficacy of general-

ist text models. LoRAs provide an efficient approach to model adaptation by introducing low-rank

matrices into the existing architecture of pre-trained models. This method capitalizes on the fact

that many language tasks can be achieved with a very limited number of additional parameters,

thereby reducing the computational burden associated with full model fine-tuning. By fixing the

original weights of the pre-trained model and only training the added low-rank matrices, LoRAs al-

low researchers to achieve task-specific performance improvements while maintaining the integrity

of the base model.

The core technical mechanism behind LoRAs involve the decomposition of weight updates

into a low-dimensional space. Instead of modifying the entire weight matrix of a billion-parameter

model, LoRAs insert trainable matrices A and B, where the rank of A and B is much lower than that

of the original weight matrix W . This transformation effectively reduces the number of parameters

that need to be tuned during training, which is especially advantageous when dealing with very

large models. As a result, LoRAs accelerate the training process and partially mitigate the risk of

overfitting by constraining the adaptation to a lower-dimensional subspace.

Additionally, a LoRA can be integrated with existing training frameworks and can be ap-

plied to various architectures, including transformers. This adaptability made it a compelling

choice for our use with LLMs and the hospital data. The low-rank matrices can be introduced

at multiple points within the model, allowing for flexible adjustments based on the task at hand.

Moreover, the use of LoRA often leads to improved generalization, as the pre-trained model retains

its ability to leverage knowledge acquired during initial training while adapting efficiently to new

contexts.

The SFTTrainer provided by the Huggingface transformers library serves as a robust frame-

work for fine-tuning LLMs using LoRAs. The trainer provides a simple interface for incorporating

low-rank adaptations into the training pipeline, facilitating the configuration of hyperparameters

specific to a LoRA such as rank size and learning rates for the added matrices. Additionally, SFT-
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Trainer is designed to manage the intricacies of distributed training, making it scalable for large

datasets and multiple GPUs of variable size. This solved the problem of ensuring the model con-

verges appropriately while maintaining the integrity of the base and adapted components. This

integration enhances the efficiency of the fine-tuning process to a degree that allowed us to fine-

tune much larger and more complex language models than would otherwise be able to train within

the time afforded for this experiment.

Hospital Cohort Selection

Design of CohortLang

Figure 3. Diagram of CohortLang pipeline.
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Action Taken Number

Unchanged 96
Removed Entirely 3

Replaced by equivalent 88

Table 1. Number of unique characters treated in different ways

Database Export

The raw data is stored in a highly-separated SQL database, with each datapoint relative

to our interests spread across multiple tables connected by multiple joins. There are many ways

by which we could connect the notes together, especially accounting for the different times and

dates associated with each of the notes. To establish a baseline evaluation of the fitness of LLMs

to accomplish this task, we opted to concatenate all documents associated with each individual

patient, and treat the entire histories of each patient as a single data point. While this means

documents far apart in time are no longer separated, it puts all text associated with a given heart

failure rating together as input to the system.

The heart-failure ratings were generated for individual hospital events, which equate roughly

to a single hospital visit. Each hospital event has an associated key both for the patient and for the

hospital event. We began preprocessing by finding all documents associated with the pair of event

and patient key associated with each heart failure rating, and grouping them together.

Characterset Simplification

The most obvious source of complexity present in the notes was the wide variety of special

UTF characters left in the exported text. On initial inspection it was not clear which of these

characters were unintended errors and which held some important meaning. Manual inspection

was required to determine when each of the special characters would occur, and if their occurrence

had any meaning such that they could not be replaced by a character present within the tokenizer’s

lexicon.

After inspection and classification of non-standard-english characters, characters deemed
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meaningless were removed entirely. Groups of characters deemed to have equivalent meanings

were replaced with a single character of their set (e.g. 7 different characters approximating the

meaning of quotation marks were found. Most diacritics were replaced with undecorated letters.

All common alphanumeric and grammatical characters were untouched. The breakdown of char-

acter treatment is shown in Table 1. Overall, this process rendered the text simpler in composition

for easier processing in a way that did not greatly affect structure.

Note Type Filtering

Within the patient notes, we found many text artifacts that added complexity or length

without adding information. Unnecessary complexity would serve only slow convergence of the

model, spending time adapting the weights to properly process things that could have been removed

automatically before model inference, and unnecessary length would simply add to training and

inference time and increase the chances that CohortLang would de-emphasize earlier important

information. Thus a decent amount of effort was dedicated to experimenting with preprocessing

methods to see what allowed the model to learn faster without removing important knowledge

from the patient notes.

Document Lengths Statistics, in number of Note Sections
Metric

Average Section Num 536
STD 566

Min. Section Num 39
25 Percent 251
50 Percent 392
75 Percent 629

Maximum Section Num 29092

Table 2. Summary of number of note sections per patient

After the character set was simplified, the total document text D was split into sub-sections

s along tokens deemed to be spacing tokens. Each of these subsections was assigned a score based

on how many commonly-seen anti-patterns were recognized with it. These anti-patterns include

typos, inconsistently-spelled names, long documents indicated by phrases like “toll-free” or “no
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Histogram of document character counts before and after preprocessing
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Figure 4. Character counts before and after

past”. Patients with no usable documents were rejected from the dataset altogether, as it was

unlikely the model could be trained on any meaningful information from them or be expected to

accurately predict their likelihood for heart failure during evaluation. The number of document

sub-sections per patient (after removing patients with no good documentation) can be found in

Table 2.

The remaining text fragments were then re-combined into one using a spacer character. We

tested two different spacer characters to denote separation between documents and/or sections;

One was the “/SEP/” token used by some major LLMs, the other was a simple period and space.

The SEP token saw better performance in models specifically designed to recognize it, but the

standard sentence separator saw better overall performance. As models can learn to recognize the

roles that previously-unseen tokens have within the documents they are trained on, it was assumed

that even models untrained on the dedicated separator token would be able to infer the context and

meaning of its use, but whatever degree to which they learned to understand it did not outweigh

the training time they saved by not needing to interpret standard grammar symbols.

The final effect pre-processing had on the lengths of patients’ notes can be found in Figure 4

and Table 3. In particular this shows how many patients had written medical history with under 100
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Statistics on Document Lengths, in characters
Metric Unprocessed Processed

Number of Documents 266383 232057
Mean Length 119697 63767
Length STD 230216 75903

Minimum length 1 3640
25 percent 34478 28267
50 percent 67182 43963
75 percent 129934 72771

Max Length 18571322 4609261

Table 3. Document length statistics

characters before processing, and how processing lowered the maximum note length by a power

of ten, allowing much more information to fit within the context window of the model.

Text Subsegmentation

All collected hospital documents were longer than the context length of the models used

for evaluation. Multiple methods were used to process the text into a length usable by the rest of

CohortLang.

• First-n truncation, removing all tokens after the context length of the model.

• Last-n truncation, taking the context length from the end of the text.

• First-Last-n/2 truncation, taking tokens from the beginning and end of the text and removing

the middle.

• Length-bounded subdivision, splitting the text Pi into substrings Pi j. An optimal-split algo-

rithm is used to reduce the superset of text to as few substrings as possible while maximizing

the length of all individual substrings.

Length-bounded subdivision is the only method that leads to there being more than one

document per patient, leading to a need for combining multiple document predictions into one

patient prediction.
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The Optimal Split algorithm is one we designed to divide a document into a set of groups of

text sections or “splits” that preserve full sentences, maximize individual split length to take max-

imal advantage of LLM context windows, and ensure all splits fit within a given context window

size.

Given a document D and a context length c, a set of sentences S is collected by splitting on

the simple pattern of a period followed by a space. (“. ”)

From S, we calculate a list of integers LS each representing the number of words a sentence.

LS = {|s| : si ∈ S}

We calculate the number of words by splitting each sentence si on the space character. The

word count is used to roughly approximate the number of tokens in each sentence.

While a tokenizer could be used to calculate the exact number of tokens, different tokenizers

were used for different models, and it was deemed undesirable to split the text differently for each

model trial.

We also calculate the total number of words in the document LD.

LD = ∑
l∈L

l

To generate the initial splits, we divide D into a set of splits with an equal number of

sentences in each split. We calculate the number of sentences in each split from LD and c,

Lsplits = |LS|//(1+LD//c)

And then use that number to generate our set of splits Pinit

Pinit = {S[w∗Lsplits : (w+1)∗Lsplits]}

Once we have our starting splits, we calculate a score for the split set.
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The score per split is calculated

Φi =
(c−|pi|)2 pi < c

b pi > c

Where b is a large but not infinite constant. (10000) We use b instead of max int or infinity

because it is beneficial to factor how many sentences are over c into the score, meaning there must

be room for a larger number.

The score for all splits is calculated from the root of the sum of the scores.

Φ =
√

∑
Φi∈Φ

Φi

After calculating the starting score, we calculate the scores of all possible split-sets created

by shifting a single sentence from one split to another. If any of the scores produced by said shifts

are lower than the current score, that split becomes the current split. This process continues until

the current split has a score lower or equal to all possible sets formed by a single-sentence shift.

Once a minimum score is found, the algorithm returns the set of sentences.

Segment Prompt Formatting

To direct the LLM chosen to output the information we need, the text of the patient note is

inserted into a prompt template.

### INSTRUCTION

[ patient note text ]

Does this patient suffer from heart failure?

### RESPONSE

This prompt template matches the Instruction template used to train many popular LLMs,

often referred to simply as Instruct models. This format was used because we found that even
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models not specifically trained on this Instruct format performed well with it.

During training, the model was trained to respond specifically with either “Yes, the patient

suffers from heart failure” or “No, the patient does not suffer from heart failure”. This method of

training it to respond with only “yes” or “no” trains it to respond in a way that facilitates binary

classification, and training it to respond with full sentences in that exact style emphasized what

“yes” and “no” answers mean in the context of the question and prevents it from responding with

technically-correct but undesirable answers such as “There is insufficient information to answer

this question” or “Additional testing is required to determine”.

The decision to select the ‘Yes’ or ‘No’ text template during training was made using the

ground-truth HF-ratings provided by Dr. Zetumer. He advised that we consider any patient with

an HF-rating of 2 or higher as being positive for heart failure.

Prompt Tokenization

Text requires tokenization before being fed into LLMs. Tokenization is a preprocessing step

that transforms raw text into manageable unit - called tokens - that can be effectively processed

by transformer architectures. By segmenting text into subword units or whole words which are

assigned integer IDs, tokenization enables LLMs to handle a vast vocabulary while maintaining a

manageable input size, thus facilitating efficient computation and memory usage. Moreover, tok-

enization allows partial mitigation of the out-of-vocabulary problem, allowing models to generate

and/or understand rare or novel words by breaking them down into smaller, recognizable com-

ponents. This adaptability not only enhances the model’s ability to learn from diverse linguistic

datasets, but also improves its performance on downstream tasks.

As CohortLang is built to be used with pre-trained models, the models fine-tuned already

have provided tokenizers for pre-processing use. We use the provided tokenizers to convert the

formatted text of each split Ptext into a sequence of token IDs Ptokens.
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Prompt Inference

The tokens are fed to the model, which generates ε sets of n tokens. This is equivalent

to asking the model to answer the question ε times. This is done because the model has a ran-

dom element to its text generation, and may provide different answers for each seed. Multiple

responses allows us to generate an integer confidence rating ζ representing how many times the

model answers the question “yes”.

A response is considered a “yes” if the token(s) for the word “yes” appear within the n

tokens generated for a response. ζ is the number of responses given that are considered “yes”

answers.

Mixture of Experts Aggregation

When evaluating a patient’s notes for heart failure classification, the inference step outputs

an integer number representing “yes”. There are multiple methods for combining the responses

into the binary positive/negative judgment we require. For each prompt P we can use a threshold

based on either the number of “yes” responses ζ or the proportion of answers that were “yes” ζ

ε
.

The problem of aggregating a mixture-of-experts answer into a single classification is not a new

problem in and of itself. However this problem setting has the abnormal potential to have a variable

number of experts/answers per sample depending on the length of the patient’s document, which

means that established mixture-of-experts methods aren’t necessarily the most effective solution.

In this context, taking the sum of all ζ j is better at catching all HF-positive patients but

it is biased towards selecting patients with longer medical histories. This is not necessarily bad,

as patients with concerning medical conditions are more likely to have more extensive medical

histories. However this bias quickly becomes more of a problem if we want to select for a patient

condition that is not likely to correlate with the number of visits a patient has made to the hospital.
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Threshhold Decision

As the decision of what threshold value to use is an important decision to be made on a

study-by-study basis by the researcher in question, we do not seek to decide on a threshold value

ourselves, or train the model to find an ’ideal’ single decision boundary. Instead, we evaluate

the model at all threshold values and examine the sensitivity-to-specificity tradeoff as the treshold

value changes.

Training

When first presented with the hospital data and the task of cohort selection, the first at-

tempted solution was utilizing CorNet as it had already proven both the ability of the backbone

models to acceptably parse the more intricate and complex medical terminology and discussions

alongside the ability of the CorNet module itself to understand correlations between medical topics

represented by the labels of the datasets.

This initial approach was largely unsuccessful, with the best-performing backbone produc-

ing results slightly worse than those of a simple logistic regression performed on a bag-of-words

representation of the patient document. This wasn’t surprising as patients were assigned a single

diagnostic code per visit, meaning the vast majority of the patients were assigned a single label.

This stands in stark contrast to the general-purpose datasets CorNet was originally designed for,

where the average number of labels per document ranged from 3 to 5 between the datasets. If most

patients are only assigned one label, this means that very few labels co-occur at all, and there is

little correlation for CorNet to learn.

The next test was evaluating the efficiency of Transformer-based LLMs against the complex

text of the patient notes.

After the data was cleaned of unneeded decoration characters and low-information docu-

ments, all notes were arranged into a simple Instruction and Response format used to train Instruct

models, a variety of LLM specifically trained to take text descriptions of a task they are to perform,

and respond with their completion of the task - such as asking it to write a CV. The instruction given
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was simple - after the text of the patient document, the question “Does this patient suffer from heart

failure?” was inserted at the end of the text and CohortLang was prompted to write a response.

During the training, CohortLang was trained to respond with either “Yes, the patient suffer

from heart failure.” or “No, the patient does not suffer from failure.” During initial training Cohort-

Lang was prompted to respond simply with “Yes” or “No”, but when not provided with sufficient

context for the answers provided, CohortLang would occasionally respond with other words en-

tirely or respond with sentences that began with “yes” or “no” as a part of a longer statement that

did not properly answer the question, e.g. “No clear decision can be made without further infor-

mation.” The longer answers were then provided to train CohortLang in a way that gave the use of

“Yes” or “No” an explicit context that left no ambiguity as to the meaning of the answers.

To evaluate the accuracy of CohortLang in predicting heart failure, an approach akin to a

Mixture of Experts structure is taken. In this setting, this means that CohortLang generates multiple

responses to the provided question and the responses are combined to form the final prediction,

leading to a numerical rating that resembles - but is not necessarily correlated with - the initial

heart failure rating provided by Dr. Zetumer’s formula.
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CHAPTER 4: EXPERIMENTS

CorNet

Re-creation

Before transferring CorNet[42] to the medical domain, we re-created the results of the orig-

inal paper on our own hardware. This was done to establish that we were running CorNet correctly

and to verify the improvement it is meant to provide over ”bare” models.

We used the same datasets as the original paper, EUR-Lex[8], AmazonCat-13K, and Wiki-

500K. For the backbone models, we focused on the models specialized in medical text and speed,

AttentionXML[46] and MeSHProbeNet[43].

Adaptation of the CorNet code required recreation of certain integral parts as the origi-

nal paper used versions of provided packages that were not supported by our current laboratory

hardware. In addition to re-writing the parts that referenced the outdated libraries, we took the

opportunity to rewrite the structure of CorNet. Whereas the original paper designed and coded

custom CorNet models for each backbone, we changed the implementation to express the func-

tionality CorNet as a single wrapper class that can be constructed around any backbone that can

take input and output data that CorNet is capable of recognizing.

Transfer To Medical Text

Once the soundness of CorNet on our lab hardware was confirmed, we integrated the

MIMIC[1] data into the existing CorNet preprocessing code and formatted all the labels to be

correctly interpreted by the system. Hyperparameters had to be tuned in order to accommodate

documents that were longer than any in the previous datasets, but aside from requiring additional

training time, this added no complications.
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Hospital Data

Baseline Results

CountVectoriser

A Count Vectorizer [5] is a fundamental text preprocessing technique widely used in NLP

to transform text data into a numerical vector format suitable for machine learning algorithms.

This method operates by converting a collection of text documents into a matrix of word or to-

ken counts, where each row corresponds to a document and each column represents a unique word

from the vocabulary of the entire corpus. The resulting matrix is sparse, indicating the frequency of

each word in the respective documents. This representation allows algorithms to interpret the un-

derlying structure of the data while retaining essential information about word occurrence, thereby

facilitating subsequent analytical processes.

Unlike alternative preprocessing methods, such as TF-IDF (Term Frequency-Inverse Doc-

ument Frequency), which weigh word importance based on frequency and document distribution,

Count Vectorization maintains a straightforward count representation that can be more intuitive

for certain models. For instance, in logistic regression, the simplicity of the count matrix aids in

the direct interpretation of coefficients, making it easier to understand the influence of individual

features. Similarly, decision trees can effectively leverage the count data to partition the feature

space, potentially improving the model’s interpretability. Therefore, while Count Vectorizers pro-

vide a more basic feature representation, they offer unique advantages in preserving interpretability

and direct relationships within the data, which can be crucial for specific applications in machine

learning.

Logistic Regression

A standard Logistic Regression model (provided by the commonly-used software package

SKLearn [28]) was trained on the CountVectoriser embeddings on the hospital text as a control

test.
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Logarithmic regression is one of the most widely-used and common statistical modeling

techniques [31] [12] [9] where the logarithm of the dependent variable is regressed against one or

more independent variables. This approach is particularly useful when the relationship between

variables exhibits exponential growth patterns, as it can stabilize variance and make patterns more

interpretable. When applied to the output of a CountVectorizer[5], which was how we applied it

for our purposes, logarithmic regression can be employed to model the relationship between the

frequency of specific terms (features) and a continuous dependent variable, such as a rating or

sales figure. By transforming the target variable using a logarithmic scale, this method can effec-

tively capture multiplicative relationships and improve predictions, especially in contexts where

the response variable is skewed or exhibits a wide range of values.

Decision Trees

A standard Decision Tree model (also provided by SKLearn[28]) was trained on the CountVec-

toriser embeddings on the hospital text as a control test.

Decision trees [5] are a model used for both classification and regression tasks. They operate

by recursively splitting the data into subsets based on feature values, creating a tree-like structure

where each internal node represents a feature, each branch signifies a decision rule, and each leaf

node indicates an outcome or predicted class. In the context of text processing, decision trees

can leverage the numerical representations generated by techniques like Count Vectorization. This

allows the model to capture the relationships and patterns within the data effectively, making it

suitable for various NLP applications such as sentiment analysis, topic classification, and spam

detection.

Decision trees benefit from a straightforward feature representation that allows for quick

and interpretable decision-making. The model can identify the most significant words that con-

tribute to class distinctions, effectively determining thresholds that separate classes based on the

presence or absence of specific terms. This interpretability is particularly valuable in text analysis,

where understanding the reasoning behind classifications can be critical for end-users. Further-
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more, decision trees are capable of handling both binary and multi-class classification problems,

making them a robust choice for text classification tasks. However, their susceptibility to overfit-

ting, especially with high-dimensional data typical of text, necessitates careful tuning and potential

integration with techniques like pruning or ensemble methods to enhance generalization and pre-

dictive performance.

Large Language Models

Llama 1 And 3

The Llama family of models [38] [15], developed by Meta, are a collection of LLMs that

emphasize efficiency and adaptability in natural language processing tasks. Launched initially with

Llama 1, the series introduced a range of architectures that optimize for both performance and

accessibility, enabling researchers and developers to leverage state-of-the-art capabilities without

the prohibitive resource demands typically associated with LLMs. The subsequent versions have

continued to refine the training processes, improving not only the contextual understanding and

coherence of generated text but also enhancing fine-tuning capabilities across diverse applications.

The iterative enhancements within the Llama family focus on addressing the nuanced chal-

lenges of language generation, including contextual relevance, reduced bias, and ethical consider-

ations in deployment. By implementing new training methods and dataset curation practices, Meta

has positioned the Llama models as competitive alternatives in the crowded LLM space. Their

open-access framework makes using their various sub-versions an appealing choice for all uses,

including experimentation within the research community.

MedLlama3

With the machinery used for our experiment, Llama3 [15] was too large to be properly fine-

tuned with a LoRA [18] of any significant resolution. In order to evaluate the performance of the

major new model, we used the MedLlama3 fine-tune released by the Yonsei University Medical
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AI Laboratory. This allows us to evaluate how much fine-tuning on general medical text conveyed

a capacity for medical question answering.

Microsoft Phi

Microsoft Phi 2 [24] is an LLM model developed by Microsoft Corporation. It is smaller

than other LLMs with similar performance metrics, consisting of only 2.7 billion parameters when

most similarly-performing current models are built with 7 billion [15] parameters. Its smaller size

meant that we could train a higher-rank (larger, higher-resolution) LoRA, meaning more detail and

nuance in the information it learned from the hospital data.

Before fine-tuning Phi, we also tested its base performance evaluating Heart Failure likeli-

hood in order to determine how much fine-tuning increased its prediction accuracy.

Phi was then tested again after 3 epochs of training at a learning rate of 2×10−7 on 80% of

the hospital data.
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CHAPTER 5: RESULTS

We use multiple common metrics to evaluate the performance of these models: Micro-

Precision[23], Micro-Recall[23], Micro-F1[23], and Normalized Discounted Cumulative Gain[42]

(nDCG). The formulation for these follows:

Assuming a number of total labels K and number of total documents N, yi, ŷi ∈ 0,1K ,

PrecisionMicro =
∑

K
k=1 ∑

N
i=1 yk

i · ŷk
i

∑
K
k=1 ∑

N
i=1 ŷk

i

RecallMicro =
∑

K
k=1 ∑

N
i=1 yk

i · ŷk
i

∑
K
k=1 ∑

N
i=1 yk

i

F1Micro =
2 ·PrecisionMicro ·RecallMicro

PrecisionMicro +RecallMicro

Speci f icityk =
∑

N
i=1(1− yk

i ) · (1− ŷk
i )

∑
N
i=1 yk

i

nDGCk =
DCGk

∑
min(k,||z||0)
l=1 log(l +1)−1

for a given integer k and

DCGk = ∑
l∈rk(ẑ)

zl

log(l +1)

The Precision of a classification is a measure of how many predictions of that class were

incorrect, or the ”impurity” of those predictions. Specifically, this means precision in XMTC

settings will be lower for a label if that label is over-assigned to documents on which it does not

belong. In the case of cohort selection, it means that heart-failure-negative patients were given a

higher confidence score than they should have been.

The Recall of a classification is a measure of how many documents with that label were not
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Comparing AttentionXML performance with and without CorNet on EUR-Lex
Metric N=1 N=3 N=5

micro-Precision 0.7759 0.5226 0.6332
micro-Precision w/CorNet 0.8227 0.6870 0.5711

micro-Recall 0.1464 0.3586 0.4933
micro-Recall w/CorNet 0.1553 0.3890 0.5390

micro-F1 0.2464 0.4579 0.5075
micro-F1 w/CorNet 0.2612 0.4967 0.5546

Table 4. AttentionXML performance metrics on EUR-Lex text

predicted to have said label. This means recall in XMTC settings will be lower for a label if that

label is not assigned to documents on which it belongs. In the case of cohort selection, it means

that heart-failure-positive patients were not given the high confidence score they should have been.

As Precision will be 1.0 if all documents are assigned no labels (as there are thusly no

wrongly-assigned labels) and Recall will be 1.0 if all documents are assigned all labels (as there

will be no documents missing labels they should have), F1 represents a ”compromise” between the

two metrics in an attempt to calculate a more accurate rating of model performance.

XMTC

Re-creation of CorNet

The re-creations showed similar performance to the original paper[42] with precision dif-

fering from the original by no more than 2% (as can be seen in Table 4, which compares the

performance of AttentionXML[46] when predicting the labels associated with documents in EUR-

Lex[8] with and without the assistance of CorNet).

Figure 5 demonstrates the acceleration in loss convergence shown in the original CorNet

paper[42]. The difference between CorNet and non-CorNet models differs depending on the back-

bone, but in all tests, CorNet models would reach convergence at least 5 epochs before the non-

CorNet versions. With the addition of CorNet increasing training times by under one second per

epoch, this reinforces the motivation for adding CorNet layers to models in XMTC settings by

showing a reliable decrease in overall training time.
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Figure 5. Training and Validation loss of models trained on EUR-Lex

Transfer To Medical Text

The results immediately showed that while performance varied significantly between dif-

ferent backbone models, the improvement provided by CorNet was not only still present, but con-

sistent and even increased greater than previous datasets.

As shown in Table 4, backbone performance was much poorer on the MIMIC[1] dataset

than the EUR-Lex dataset. However, the CorNet-augmented versions of the models (Table 4)

show that CorNet retains its capacity to improve on the accuracy of predictions, even when the

input predictions are less accurate.
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Metric N=1 N=3 N=5

AttentionXML
Micro-Precision 0.5824 0.4769 0.4171

Micro-Precision (CorNet) 0.6245 0.5118 0.4498
Micro-Recall 0.0290 0.0712 0.1038

Micro-Recall (CorNet) 0.0311 0.0764 0.1120
Micro-F1 0.0552 0.1240 0.1663

Micro-F1 (CorNet) 0.0592 0.1330 0.1794
NDCG 0.5824 0.5013 0.4559

NDCG (CorNet) 0.6245 0.5382 0.4913
MeSHProbeNet
Micro-Precision 0.5366 0.4466 0.3915

Micro-Precision (CorNet) 0.6689 0.5545 0.4822
Micro-Recall 0.0267 0.0667 0.0975

Micro-Recall (CorNet) 0.0333 0.0828 0.1201
Micro-F1 0.0509 0.1161 0.1561

Micro-F1 (CorNet) 0.0634 0.1441 0.1923
Micro-NDCG 0.5366 0.4686 0.4275

NDCG (CorNet) 0.6689 0.5829 0.5300

Table 5. XMTC model performance metrics on MIMIC-IV text
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Figure 6. Sensitivity and Specificity of Logistic Regression after training on Hospital Data
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Metric Performance

F1 0.0129
Precision 0.5

Recall/Sensitivity 0.0065
Specificity 0.9998

Table 6. Decision Tree performance metrics on Hospital Data

Cohort Selection

Baseline Results

Logistic Regression

Logistic Regression[31] managed to perform much better than expected, successfully cap-

turing 37.37% of heart-failure-positive patients at its lowest threshold, as shown in Figure 6. Per-

formance quickly dropped, not managing to capture any patients

Decision Trees

Even with multiple trials, the Decision Tree quickly learned to classify all samples as HF-

negative due to the overwhelming majority of the patients being negative for heart failure. Pre-

dictions were so skewed that the model would only predict patients as being heart-failure-positive

when the threshold was at the absolute minimum value. This is why there is only one set of per-

formance metrics in Table 6.

LLM Results

MedLlama3

Medllama 3 showed favorable results in terms of percentage of HF-positive patients recalled

at the lowest threshold (Figure 7), however it only removed 39% of HF-negative patients from the

output cohort. It had the highest recall of any baseline model we compared against, but with an F1

score not exceeding 0.15, its training on general medical text still leaves it falling short of models
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Figure 7. Sensitivity and Specificity of MedLlama3 after training on Hospital Data

Metric Value @ Min Threshhold Value @ Max Thredhhold

Precision 0.0329 0.1428
Recall/Sensitivity 0.8181 0.1515

F1 0.0633 0.1470
Specificity 0.3895 0.9769

Table 7. Performance of MedLlama3

trained on the pre-processed text and the provided heart-failure ratings.

Microsoft Phi

Microsoft Phi [24] was our best-performing model, capturing 75% of all heart-failure-

positive patients at its lowest threshold while removing 97% of heart-failure-negative patients

(Figure 8). If we model the amount of effort required by medical researchers to form a corpus as

the number of heart-failure-negative patients they need to reject, researchers would normally need

to manually reject 4552 out of the 4641 patients we removed from the training data for testing.

Using this model, they would only need to manually remove the 145 negative patients that were

wrongly included in the HF-positive set. This means that our fine-tuned Microsoft Phi 2 variant

reduces the effort required by 97% while losing 25% of HF-positive patients.
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Figure 8. Sensitivity and Specificity of Microsoft Phi 2 after training on Hospital Data

Metric Value @ Min Threshold Value @ Max Threshold

F1 0.4240 0.3916
Precision 0.2951 0.5185

Recall/Sensitivity 0.7528 0.3146
Specificity 0.9648 0.9942

Table 8. Performance metrics of Microsoft Phi 2 after being fine-tuned on pre-processed hospital
data

While a loss of 25% of patients that should be included is undesirable, a 97% reduction in

time taken to collect a patient cohort means that a task which might require 10 hours would instead

take roughly 30 minutes. Microsoft Phi 2 is a small model that was selected for its efficiency when

working at the size we were able to accommodate on the hardware we had available to us. If further

research was performed on a machine with a larger capacity for llm training, this process could

be performed with a larger model without having to decrease the level of detail in the LoRA[18]

trained. As seen by the difference between base medical models and their performance after fine-

tuning, training on patient notes correlates to a greater number of HF-positive patients captured.

This indicates that the 25% loss in HF-positive patients could be mitigated by further training and

higher-capacity hardware.
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Best-case performance on combinations of preprocessing steps
Character Linting Part Filtering Precision Recall F1

X X 0.625 0.515 0.565
✓ X 0.563 0.485 0.521
X ✓ 0.580 0.625 0.602
✓ ✓ 0.519 0.753 0.615

Table 9. Performance for each semantic knowledge preprocessing step combination using
best-performing model (Phi 2)

Preprocessing Evaluation

We evaluated the performance of each step independently and in concert to determine how

much each preprocessing task contributed to the overall improvement that resulted from our pro-

cessing pipeline. Unfortunately the results were not as straightforward as expected. Notably, at-

tempting to filter out documents deemed undesirable without properly filtering characters reduced

the model’s capacity to recall HF-positive patients. The predicate which partitions documents into

used and undesirable sets performs better when working with a cleaned characterset, indicating

that the preprocessing stages combined lend a greater performance increase than their individual

performance impacts combined.

Comparing the performance with and without our preprocessing also showed a dramatic

difference. We expected to an increase, however a 50% reduction in missed HF-positive patients

was far more than we expected. One of the reasons we chose to use pre-trained large language

models for this project was that they are understood to be somewhat robust against the sort of

noise that our pre-processing removed. We designed our pipeline with the understanding that we

were doing some of the language models’ work for them in order to free up computational load to

handle the complexity of the medical text. However, it was not expected that the measures taken

would effectively halve the number of patients lost.

This implies that more work done on the pre-processing stage is necessary. Pre-processing

was just one aspect of the pipeline we focused on in our experimentation, and time had to be

balanced between making improvements to the pre-processing stage and other elements. In our
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opinion, the pre-processing stage seems like the best candidate for improvements in terms of the

ratio between the potential degree of improvement and the effort necessary to achieve it.
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CHAPTER 6: CONCLUSION

In conclusion, this thesis shows the value in further research into and eventual adoption of

machine-learning-based NLP technologies in the medical sector. There are important and mean-

ingful challenges that have a significant effect on the way medicine is practiced, and this thesis

demonstrates that current machine-learning technology already has potential to be applied to these

challenges.

We evaluated two different problem settings within the domain of Text Classification and

showed that existing models and methods have the capacity to take advantage of the complex infor-

mation found both in the text of documents as well as the information inherent in the correlations

between labels. We also showed that the sophistication of current LLMs is not such that they are

capable of learning the nuances of hospital database formatting more efficiently than a simplified

version of the text, implying that whatever information exists within the highly-complex formatting

of the hospital note text is not worth the computational effort needed to extract it, and that further

research into distilling the large variety of characters and note types into a simpler encoding may

further improve performance on all manor of downstream models.

While the architectures put forth in this paper are not performant enough on their own

to warrant use in a real-world setting, they form a solid foundation for further research and are

accurate enough that they could in their current state form a solid back-end for recommendation

and double-checking systems.

Recommendations For Future Research

With the current renaissance in LLM research, any number of LLM-based innovations could

be tested with our existing pipeline for Cohort Selection. However the largest hurdles we en-

countered in our research were the length of the patient notes, and the extensive characterset and

vocabulary of their contents. Thus we recommend that further research start with context length

improvements and more robust pre-processing techniques.
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It would also be beneficial to see a prototype of the current models integrated into a sug-

gestion system to showcase how they can be used to accelerate cohort selection and ICD Code

assignment and evaluate to what degree human performance of each task can be accelerated with

these models.

During the writing of this paper Microsoft has released a third version of their Phi series

[24], Microsoft Phi 3 [2]. This represents another opportunity to explore how their improvements

to minimizing a highly-performant model could be used for medical classification, and is a fairly

trivial direction to explore further performance increases for CohortLang.

Summary

While not yet ready for real-world use in high-stakes medical settings, machine-learning

NLP methods are already mature enough to benefit severe bottlenecks in hospital bureaucracy that

are contributing to the congestion of the public health system.

Copies of fully-trained models regrettably cannot be provided as they have not been fully-

evaluated for anonymity of patients whose data was used in training.
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